Pipeline STEM Activity: Student Guide

Plan: Background

- Then: Rome used <u>aqueducts</u> to bring water sources from higher grounds to the city of Rome.
- Now: The United States has 229,523 miles of <u>oil</u> and 319,374 miles of <u>gas</u> transmission pipelines to move energy fuels from production areas to end-users.

- Aqueducts are a channel built to move water to the city
 - <u>Gravity flow</u> from a higher elevation flowing downhill to a lower elevation was used in the design.
 - Water was carried through underground channels, concrete <u>pipes</u>, or lead pipes where the city governments funded the projects.
 - When there were dips in elevation, a <u>siphon</u> was created to generate enough <u>momentum</u> of the water to continue the flow further downhill.
- Women Working on Pipelines
 - Women comprised as much as 10% of the 28,000 employees on the Trans-Alaska Pipeline Project between 1974 – 1977
 - Diane Schenker, a welder for the Trans-Alaska Pipeline, is pictured on the right in the photo.

www.TimeForChangeEngineer.com © Time For Change, LLC. 2021

Build A Pipeline Activity Materials

Objective: move water from one cup to another.

- Three (3) foam cups
- Straws (non-bending, bending straws, various diameters)
- Craft sticks
- Masking tape
- Not included:
 - Scissors
 - o Water
 - Paper towels
 - Optional:
 - Food coloring
 - Honey, vegetable oil, other viscous liquids
 - Timer
 - Measuring cup

Steps	Actions	
Plan	Consider how to move water from one cup to another using the provided materials.	Act Plan
Do	Assemble the pipeline system.	
Check	Troubleshoot if needed.	Check Do
Act	Make repairs, redesign, or optimize.	

Do: Procedure

- 1. Use the scissors to carefully poke a <u>small</u> hole in the bottom of one Styrofoam cup.
- 2. Insert a <u>small</u> diameter straw in the hole of the first cup ("straw cup").
- 3. Consider, design, and build a stand for the "straw cup" so the "straw cup" is a higher elevation than the "receiving cup" using the provided cups, straws, wooden craft sticks, and tape.
- 4. Configure the "straw cup" and stand to empty through the straw pipeline into the "receiving cup."
- 5. Pour water into the taller cup.
- 6. Troubleshoot, as needed:
 - a. If there are leaks, use tape to repair them.
 - b. If the structure elevating the first cup is not structurally sound, reinforce it.
 - c. If the water does not flow into the second cup, re-design the pipeline system.

Check: Testing & Modification

What happened?			
Observations:			
Research:			
Hypothesis:			
Testing:			
Analyze Data:			
Conclusions:			

Act: Data Gathering Activity

Constants: Use 50 mL or 1/4 cup of fluid

Variables:

- Use two fluids with different viscosities such as water and honey or water and oil.
- Change the narrow diameter straw out with the thicker diameter smoothie straw and see how the average time to move the water changes.

Using a timer, record three-time trials for each fluid type and straw diameter. After recording the times, take the average of each test and compare the results to the hypothesis.

	Thin Straw	Thick Straw
Fluid 1: Water		
Time 1		
Time 2		
Time 3		
Average		
Fluid 2:		
Time 1		
Time 2		
Time 3		
Average		

Average = $(\underline{\text{Time } 1 + \text{Time } 2 + \text{Time } 3})$

3

Science principles demonstrated in this activity:

- Pipelines
- Fluid Viscosity
- Bernoulli Principle

- PHMSA Website
- Pipeline construction
- Deming Plan Do Check Act (PDCA) Cycle

